Estimation of Bond Percolation Thresholds on the Archimedean Lattices
نویسنده
چکیده
We give accurate estimates for the bond percolation critical probabilities on seven Archimedean lattices, for which the critical probabilities are unknown, using an algorithm of Newman and Ziff.
منابع مشابه
Bond percolation critical probability bounds for three Archimedean lattices
Rigorous bounds for the bond percolation critical probability are determined for three Archimedean lattices: .7385 < pc((3, 12 ) bond) < .7449, .6430 < pc((4, 6, 12) bond) < .7376, .6281 < pc((4, 8 ) bond) < .7201. Consequently, the bond percolation critical probability of the (3, 12) lattice is strictly larger than those of the other ten Archimedean lattices. Thus, the (3, 12) bond percolation...
متن کاملSite percolation thresholds and universal formulas for the Archimedean lattices
The site percolation thresholds pc are determined to high precision for eight Archimedean lattices, by the hull-walk gradient-percolation simulation technique, with the results pc = 0.697 043, honeycomb or (6 ), 0.807 904 (3, 12), 0.747 806 (4, 6, 12), 0.729 724 (4, 8), 0.579 498 (3, 6), 0.621 819 (3, 4, 6, 4), 0.550 213 (3, 4), and 0.550 806 (3, 4, 3, 4), and errors of about ±2 × 10. (The rema...
متن کاملPredictions of bond percolation thresholds for the kagomé and Archimedean (3, 12(2)) lattices.
Here we show how the recent exact determination of the bond percolation threshold for the martini lattice can be used to provide approximations to the unsolved kagomé and (3, 12(2)) lattices. We present two different methods: one which provides an approximation to the inhomogeneous kagomé and bond problems, and the other which gives estimates of for the homogeneous kagomé (0.524 408 8...) and (...
متن کاملInclusions and non-inclusions of Archimedean and Laves lattices
For each pair of graphs from among the Archimedean lattices and their dual Laves lattices we demonstrate that one is a subgraph of the other or prove that neither can be a subgraph of the other. Therefore, we determine the entire partial ordering by inclusion of these 19 infinite periodic graphs. There are a total of 72 inclusion relationships, of which 35 are covering relations in the partial ...
متن کاملRigorous bounds relating bond percolation thresholds of two three-dimensional lattices
A percolation model is an infinite random graph model for phase transitions and critical phenomena. The percolation threshold corresponds to a phase transition point, such as a melting or freezing temperature. The exact value of the percolation threshold is not known for any three-dimensional percolation models, which are important for physical applications. Furthermore, rigorous bounds for the...
متن کامل